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Problem 1.47

Let the position of a point P in three dimensions be given by the vector r = (z,y, z) in
rectangular (or Cartesian) coordinates. The same position can be specified by cylindrical polar
coordinates, p, ¢, z, which are defined as follows: Let P’ denote the projection of P onto the xy
plane; that is, P’ has Cartesian coordinates (x,y,0). Then p and ¢ are defined as the
two-dimensional polar coordinates of P’ in the xy plane, while z is the third Cartesian coordinate,
unchanged. (a) Make a sketch to illustrate the three cylindrical coordinates. Give expressions for
p, @,z in terms of the Cartesian coordinates z,y, z. Explain in words what p is (“p is the distance
of P from 7). There are many variants in notation. For instance, some people use r
instead of p. Explain why this use of r is unfortunate. (b) Describe the three unit vectors g, &, 2
and write the expansion of the position vector r in terms of these unit vectors. (c¢) Differentiate
your last answer twice to find the cylindrical components of the acceleration a = ¢ of the particle.
To do this, you will need to know the time derivatives of p and é You could get these from the
corresponding two-dimensional results (1.42) and (1.46), or you could derive them directly as in
Problem 1.48.

Solution

Part (a)

Below is a sketch that illustrates the three cylindrical coordinates (p, ¢, z).

® P(x, y,2)

P P'x, v, 0)

X

The relationships between the cylindrical and rectangular coordinates are derived in Problem 1.42.
Pyt =p" = p=V22+)?

((tan~! (g) if z and y are positive (Quadrant I)
x

7+ tan~! <g> if x is negative and y is positive (Quadrant II)
x

7+ tan ™! <g> if z and y are negative (Quadrant IIT)
x

tan~! (g) if x is positive and y is negative (Quadrant IV)
x
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p is the distance of (z,y, z) from the z-axis—the perpendicular distance, that is. ¢ is the angle
measured counterclockwise from the z-axis in the xy-plane. z is the vertical height from the
xy-plane. The problem with using r for p (as in Problem 1.42) is that r is commonly used in
physics texts to represent the distance from the origin to (z,y, 2).

et =V

In calculus texts it’s the other way around: p = /22 + y2 + 22 and r = /22 + y2. One can tell

from context what meaning r has.
Part (b)

The unit vectors in cylindrical coordinates are illustrated below.

® P(x,y,z)
r
zZ
A .
yq@ V1
p
P'(x, 3,0
P X

p points radially outward from the z-axis; (ﬁ is perpendicular to both p and Z, pointing in the

direction of increasing ¢; and z points in the direction of the z-axis.
. _ P

pP=-

P

_rX+yy+0z

22+ 2 402

=%t Ly +02

-5+ %5402
P p

=cospX+singy+ 0z

b=5xp
=Z X (cospX+singy +02)
=cosp(zZXX)+sing(zxy)+0(zx 2)
=cos ¢ (§) +sing (—%) + 0(0)

= —sin¢gX+cos¢py+02
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In terms of these cylindrical unit vectors,

r=xX+yy+z2

~var

+ 27

x N Yy ~ o
X+ vy+0z
/x2+y2 /x2+y2 >
=pp+zz.
Part (c)

The aim here is to differentiate r with respect to ¢ twice in order to obtain # = d’r/dt?>. Find the
first derivative.

fod
Cdt

d
_ﬁ(Pﬁ-i-zi)

d, . d

PP+ o (22)

—@A—F @-F%Z-i—z@
TawPT T w dt

:%ﬁ+p%(cos¢fc+sin¢§’+oz)+%Z+Zil;
:Zﬁ+p[i(cos¢i)+i(31n¢y)]JFCZQJFZZ?
:i‘lgp‘-Fp[i(cosqﬁ)i—l—cos.(bCZ(—Fi(Sinﬁb)S"f‘SinQS?”+Z2+Zﬁ
:@ﬁ+p{<—sin¢~6§f)>‘c+cosqﬁ % +<COS¢'C£>y+Sin¢ Ccll};’} +%2+Z %
= = B

The derivative of any Cartesian unit vector with respect to time is zero.

. dp . do\ . do\ . dz
r—dtp—i—p[( sin ¢ dt)x—i—(cosd) dt)y}detZ

_dpA do . . . dz .
_EP—FPE( smgbx%—cosqby)—kaz
_dpA dp ~ dz .
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Find the second derivative.

o
ot
_d (dp . do ~ dz |
_dt(dtp+pdt¢+dtz>
_d (dp d do - d (dz
_dt(dtp>+dt(pdt¢>+dt<dtz)
L d (dp\ . dpdp dpdp . d (do\ .  dpdd d (dz\ . dzdz
_dt<dt>p+dtdt+dtdt¢+pdt i) P awa Ta\a )t wa
2p  dpdp dpdd , &6 ,  dpdd &2z dz da
B T T e G T T AT
=0
2o dpd o dpdd . 26, dbd, .. 2
:ﬁp+5%(c05¢x+sm¢y+0z)+$a¢+p@¢+paﬁ(—smgbx+cosd>y+0z)+@z
2o dpld ) ] dpde - &2é .,  dé[d, . . R
_dt2p+dt[dt(cosd)x)+dt(sm¢y)] +%%¢+Pﬁ¢+05 %(—Sln¢x)+%(cos¢w Tt
2o dpld . & d. . .. . d§g] dpdo -
dtQp—i—dt[dt(cosgﬁ)x+cos¢dt+dt(smqﬁ)y—|—81n¢>dt +E%¢
26 . dé[d. . . . d&x d ) dg1 %z
+pdt2¢+pdtLit(_81n¢)x_81n¢dt+dt(cos¢)y+COS¢dt + a2
-0 =0
2o dp do % do a9 dpdo
:dt2p+dt[<—s1n¢-dt> +cos¢dt+<cos¢~dt> +sm¢a +E%
d*¢ - do do\ . . dx ) do\ . dy d*z
+pdtQ¢+pdt[(—COS¢~dt X—Sln(ﬁa—l- —smgb-a y—|—cos¢a —|—ﬁz
—— —

=0 =0

The derivative of any Cartesian unit vector with respect to time is zero.

'I":Cj;g)ﬁ—i-zf [(—sin¢-f{f)f{+ <cosq§~cgf> }7] —i—%%i)
—l—pﬁf(ﬁ—i—pfg K—cosqb-f;s)f(—i- (—sm¢-f;f> y} +EZ§A

= Cf;gﬁ—i— %%(—Sinqﬁf(—i-cosqﬁy)%-%% 5
+pcf;;bq3—p<(j§>2(cos¢i+sin¢y)+(j;jﬁ
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The vectors in parentheses are unit vectors in cylindrical coordinates.

L dp 54 dodo s dpdo g 424 - o\ 2,

) +dtdt¢+dtdt¢+ t2¢ P\t p+dt2
d2p d 26 dpdd a2z
[dtQ - (dt) ) ¢+

bR S st fadliad
p+( Paz T a2 ”

Therefore, since a = ¥, the components of acceleration in cylindrical coordinates are

Lo (doN?
P2 dt
d2¢  _dpdo
W =Pz Ty
s
2 de?
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