Problem 1.47

Let the position of a point P in three dimensions be given by the vector $\mathbf{r}=(x, y, z)$ in rectangular (or Cartesian) coordinates. The same position can be specified by cylindrical polar coordinates, ρ, ϕ, z, which are defined as follows: Let P^{\prime} denote the projection of P onto the $x y$ plane; that is, P^{\prime} has Cartesian coordinates $(x, y, 0)$. Then ρ and ϕ are defined as the two-dimensional polar coordinates of P^{\prime} in the $x y$ plane, while z is the third Cartesian coordinate, unchanged. (a) Make a sketch to illustrate the three cylindrical coordinates. Give expressions for ρ, ϕ, z in terms of the Cartesian coordinates x, y, z. Explain in words what ρ is (" ρ is the distance of P from \qquad "). There are many variants in notation. For instance, some people use r instead of ρ. Explain why this use of r is unfortunate. (b) Describe the three unit vectors $\hat{\boldsymbol{\rho}}, \hat{\boldsymbol{\phi}}, \hat{\mathbf{z}}$ and write the expansion of the position vector \mathbf{r} in terms of these unit vectors. (c) Differentiate your last answer twice to find the cylindrical components of the acceleration $\mathbf{a}=\ddot{\mathbf{r}}$ of the particle. To do this, you will need to know the time derivatives of $\hat{\rho}$ and $\hat{\phi}$. You could get these from the corresponding two-dimensional results (1.42) and (1.46), or you could derive them directly as in Problem 1.48.

Solution

Part (a)
Below is a sketch that illustrates the three cylindrical coordinates (ρ, ϕ, z).

The relationships between the cylindrical and rectangular coordinates are derived in Problem 1.42.

$$
\begin{array}{ll}
x^{2}+y^{2}=\rho^{2} & \rightarrow \rho=\sqrt{x^{2}+y^{2}} \\
\tan \phi=\frac{y}{x} & \Rightarrow \phi=\left\{\begin{array}{ll}
\tan ^{-1}\left(\frac{y}{x}\right) & \text { if } x \text { and } y \text { are positive (Quadrant I) } \\
\pi+\tan ^{-1}\left(\frac{y}{x}\right) & \text { if } x \text { is negative and } y \text { is positive (Quadrant II) } \\
\pi+\tan ^{-1}\left(\frac{y}{x}\right) & \text { if } x \text { and } y \text { are negative (Quadrant III) } \\
\tan ^{-1}\left(\frac{y}{x}\right) & \text { if } x \text { is positive and } y \text { is negative (Quadrant IV) }
\end{array} .\right. \\
z=z & \rightarrow z=z
\end{array}
$$

ρ is the distance of (x, y, z) from the z-axis - the perpendicular distance, that is. ϕ is the angle measured counterclockwise from the x-axis in the $x y$-plane. z is the vertical height from the $x y$-plane. The problem with using r for ρ (as in Problem 1.42) is that r is commonly used in physics texts to represent the distance from the origin to (x, y, z).

$$
r=|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

In calculus texts it's the other way around: $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$ and $r=\sqrt{x^{2}+y^{2}}$. One can tell from context what meaning r has.

Part (b)

The unit vectors in cylindrical coordinates are illustrated below.

$\hat{\boldsymbol{\rho}}$ points radially outward from the z-axis; $\hat{\boldsymbol{\phi}}$ is perpendicular to both $\hat{\boldsymbol{\rho}}$ and $\hat{\mathbf{z}}$, pointing in the direction of increasing ϕ; and $\hat{\mathbf{z}}$ points in the direction of the z-axis.

$$
\begin{aligned}
\hat{\boldsymbol{\rho}} & =\frac{\rho}{|\boldsymbol{\rho}|} \\
& =\frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+0 \hat{\mathbf{z}}}{\sqrt{x^{2}+y^{2}+0^{2}}} \\
& =\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{x}}+\frac{y}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\frac{x}{\rho} \hat{\mathbf{x}}+\frac{y}{\rho} \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
\hat{\phi} & =\hat{\mathbf{z}} \times \hat{\boldsymbol{\rho}} \\
& =\hat{\mathbf{z}} \times(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\cos \phi(\hat{\mathbf{z}} \times \hat{\mathbf{x}})+\sin \phi(\hat{\mathbf{z}} \times \hat{\mathbf{y}})+0(\hat{\mathbf{z}} \times \hat{\mathbf{z}}) \\
& =\cos \phi(\hat{\mathbf{y}})+\sin \phi(-\hat{\mathbf{x}})+0(\mathbf{0}) \\
& =-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
\hat{\mathbf{z}} & =\hat{\mathbf{z}}
\end{aligned}
$$

In terms of these cylindrical unit vectors,

$$
\begin{aligned}
\mathbf{r} & =x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}} \\
& =\sqrt{x^{2}+y^{2}}\left(\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{x}}+\frac{y}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+z \hat{\mathbf{z}} \\
& =\rho \hat{\boldsymbol{\rho}}+z \hat{\mathbf{z}} .
\end{aligned}
$$

Part (c)

The aim here is to differentiate \mathbf{r} with respect to t twice in order to obtain $\ddot{\mathbf{r}}=d^{2} \mathbf{r} / d t^{2}$. Find the first derivative.

$$
\begin{aligned}
\dot{\mathbf{r}} & =\frac{d \mathbf{r}}{d t} \\
& =\frac{d}{d t}(\rho \hat{\boldsymbol{\rho}}+z \hat{\mathbf{z}}) \\
& =\frac{d}{d t}(\rho \hat{\boldsymbol{\rho}})+\frac{d}{d t}(z \hat{\mathbf{z}}) \\
& =\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}+\rho \frac{d \hat{\boldsymbol{\rho}}}{d t}+\frac{d z}{d t} \hat{\mathbf{z}}+z \frac{d \hat{\mathbf{z}}}{d t} \\
& =\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}+\rho \frac{d}{d t}(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}})+\frac{d z}{d t} \hat{\mathbf{z}}+z \frac{d \hat{\mathbf{z}}}{d t} \\
& =\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}+\rho\left[\frac{d}{d t}(\cos \phi \hat{\mathbf{x}})+\frac{d}{d t}(\sin \phi \hat{\mathbf{y}})\right]+\frac{d z}{d t} \hat{\mathbf{z}}+z \frac{d \hat{\mathbf{z}}}{d t} \\
& =\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}+\rho[\frac{d}{d t}(\cos \phi) \hat{\mathbf{x}}+\cos \phi \frac{d \hat{\mathbf{x}}}{d t}+\underbrace{\frac{d}{d t}(\sin \phi)} \hat{\mathbf{y}}+\sin \phi \frac{d \hat{\mathbf{y}}}{d t}]+\frac{d z}{d t} \hat{\mathbf{z}}+z \frac{d \hat{\mathbf{z}}}{d t} \\
& =\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}+\rho[\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}+\cos \phi \underbrace{\frac{d \hat{\mathbf{x}}}{d t}}_{=\mathbf{0}}+\left(\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}}+\sin \phi \underbrace{\frac{d \hat{\mathbf{y}}}{d t}}_{=\mathbf{0}}]+\frac{d z}{d t} \hat{\mathbf{z}}+z \underbrace{\frac{d \hat{\mathbf{z}}}{d t}}_{=\mathbf{0}}
\end{aligned}
$$

The derivative of any Cartesian unit vector with respect to time is zero.

$$
\begin{aligned}
\dot{\mathbf{r}} & =\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}+\rho\left[\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}+\left(\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}}\right]+\frac{d z}{d t} \hat{\mathbf{z}} \\
& =\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}+\rho \frac{d \phi}{d t}(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}})+\frac{d z}{d t} \hat{\mathbf{z}} \\
& =\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}+\rho \frac{d \phi}{d t} \hat{\boldsymbol{\phi}}+\frac{d z}{d t} \hat{\mathbf{z}}
\end{aligned}
$$

Find the second derivative.

$$
\begin{aligned}
& \ddot{\mathbf{r}}= \frac{d \dot{\mathbf{r}}}{d t} \\
&= \frac{d}{d t}\left(\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}+\rho \frac{d \phi}{d t} \hat{\boldsymbol{\phi}}+\frac{d z}{d t} \hat{\mathbf{z}}\right) \\
&= \frac{d}{d t}\left(\frac{d \rho}{d t} \hat{\boldsymbol{\rho}}\right)+\frac{d}{d t}\left(\rho \frac{d \phi}{d t} \hat{\boldsymbol{\phi}}\right)+\frac{d}{d t}\left(\frac{d z}{d t} \hat{\mathbf{z}}\right) \\
&= \frac{d}{d t}\left(\frac{d \rho}{d t}\right) \hat{\boldsymbol{\rho}}+\frac{d \rho}{d t} \frac{d \hat{\boldsymbol{\rho}}}{d t}+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}}+\rho \frac{d}{d t}\left(\frac{d \phi}{d t}\right) \hat{\boldsymbol{\phi}}+\rho \frac{d \phi}{d t} \frac{d \hat{\boldsymbol{\phi}}}{d t}+\frac{d}{d t}\left(\frac{d z}{d t}\right) \hat{\mathbf{z}}+\frac{d z}{d t} \frac{d \hat{\mathbf{z}}}{d t} \\
&= \frac{d^{2} \rho}{d t^{2}} \hat{\boldsymbol{\rho}}+\frac{d \rho}{d t} \frac{d \hat{\boldsymbol{\rho}}}{d t}+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}}+\rho \frac{d^{2} \phi}{d t^{2}} \hat{\boldsymbol{\phi}}+\rho \frac{d \phi}{d t} \frac{d \hat{\boldsymbol{\phi}}}{d t}+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{z}}+\frac{d z}{d t} \underbrace{\frac{d \hat{\mathbf{z}}}{d t}}_{=\mathbf{0}} \\
&= \frac{d^{2} \rho}{d t^{2}} \hat{\boldsymbol{\rho}}+\frac{d \rho}{d t} \frac{d}{d t}(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}})+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}}+\rho \frac{d^{2} \phi}{d t^{2}} \hat{\boldsymbol{\phi}}+\rho \frac{d \phi}{d t} \frac{d}{d t}(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}})+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{z}} \\
&= \frac{d^{2} \rho}{d t^{2}} \hat{\boldsymbol{\rho}}+\frac{d \rho}{d t}\left[\frac{d}{d t}(\cos \phi \hat{\mathbf{x}})+\frac{d}{d t}(\sin \phi \hat{\mathbf{y}})\right]+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}}+\rho \frac{d^{2} \phi}{d t^{2}} \hat{\boldsymbol{\phi}}+\rho \frac{d \phi}{d t}\left[\frac{d}{d t}(-\sin \phi \hat{\mathbf{x}})+\frac{d}{d t}(\cos \phi \hat{\mathbf{y}})\right]+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{z}} \\
&= \frac{d^{2} \rho}{d t^{2}} \hat{\boldsymbol{\rho}}+\frac{d \rho}{d t}\left[\frac{d}{d t}(\cos \phi) \hat{\mathbf{x}}+\cos \phi \frac{d \hat{\mathbf{x}}}{d t}+\frac{d}{d t}(\sin \phi) \hat{\mathbf{y}}+\sin \phi \frac{d \hat{\mathbf{y}}}{d t}\right]+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \\
&+\rho \frac{d^{2} \phi}{d t^{2}} \hat{\boldsymbol{\phi}}+\rho \frac{d \phi}{d t}\left[\frac{d}{d t}(-\sin \phi) \hat{\mathbf{x}}-\sin \phi \frac{d \hat{\mathbf{x}}}{d t}+\frac{d}{d t}(\cos \phi) \hat{\mathbf{y}}+\cos \phi \frac{d \hat{\mathbf{y}}}{d t}\right]+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{z}} \\
&= \\
&=\frac{d^{2} \rho}{d t^{2}} \hat{\boldsymbol{\rho}}+\frac{d \rho}{d t}[\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}+\cos \phi \frac{d \hat{\mathbf{x}}}{d t}+\left(\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}}+\sin \phi \overbrace{\frac{d \hat{\mathbf{y}}}{d t}}]+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \\
&+\rho \frac{d^{2} \phi}{d t^{2}} \hat{\boldsymbol{\phi}}+\rho \frac{d \phi}{d t}[\left(-\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}-\sin \phi \underbrace{\frac{d \hat{\mathbf{x}}}{d t}}_{=\mathbf{0}}+\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}}+\cos \phi \underbrace{\frac{d \hat{\mathbf{y}}}{d t}}_{=\mathbf{0}}]+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{z}}
\end{aligned}
$$

The derivative of any Cartesian unit vector with respect to time is zero.

$$
\begin{aligned}
& \ddot{\mathbf{r}}=\frac{d^{2} \rho}{d t^{2}} \hat{\boldsymbol{\rho}}+\frac{d \rho}{d t} {\left[\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}+\left(\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}}\right]+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}} } \\
&+\rho \frac{d^{2} \phi}{d t^{2}} \hat{\boldsymbol{\phi}}+\rho \frac{d \phi}{d t}\left[\left(-\cos \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{x}}+\left(-\sin \phi \cdot \frac{d \phi}{d t}\right) \hat{\mathbf{y}}\right]+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{z}} \\
&=\frac{d^{2} \rho}{d t^{2}} \hat{\boldsymbol{\rho}}+\frac{d \rho}{d t} \frac{d \phi}{d t}(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}})+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}} \\
&+\rho \frac{d^{2} \phi}{d t^{2}} \hat{\boldsymbol{\phi}}-\rho\left(\frac{d \phi}{d t}\right)^{2}(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}})+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{z}}
\end{aligned}
$$

The vectors in parentheses are unit vectors in cylindrical coordinates.

$$
\begin{aligned}
\ddot{\mathbf{r}} & =\frac{d^{2} \rho}{d t^{2}} \hat{\boldsymbol{\rho}}+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}}+\frac{d \rho}{d t} \frac{d \phi}{d t} \hat{\boldsymbol{\phi}}+\rho \frac{d^{2} \phi}{d t^{2}} \hat{\boldsymbol{\phi}}-\rho\left(\frac{d \phi}{d t}\right)^{2} \hat{\boldsymbol{\rho}}+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{z}} \\
& =\left[\frac{d^{2} \rho}{d t^{2}}-\rho\left(\frac{d \phi}{d t}\right)^{2}\right] \hat{\boldsymbol{\rho}}+\left(\rho \frac{d^{2} \phi}{d t^{2}}+2 \frac{d \rho}{d t} \frac{d \phi}{d t}\right) \hat{\boldsymbol{\phi}}+\frac{d^{2} z}{d t^{2}} \hat{\mathbf{z}}
\end{aligned}
$$

Therefore, since $\mathbf{a}=\ddot{\mathbf{r}}$, the components of acceleration in cylindrical coordinates are

$$
\left\{\begin{array}{l}
a_{\rho}=\frac{d^{2} \rho}{d t^{2}}-\rho\left(\frac{d \phi}{d t}\right)^{2} \\
a_{\phi}=\rho \frac{d^{2} \phi}{d t^{2}}+2 \frac{d \rho}{d t} \frac{d \phi}{d t} \\
a_{z}=\frac{d^{2} z}{d t^{2}}
\end{array}\right.
$$

